82,780 research outputs found

    High precision predictions for exclusive VHVH production at the LHC

    Get PDF
    We present a resummation-improved prediction for VHVH + 0 jets production at the Large Hadron Collider. We focus on highly-boosted final states in the presence of jet veto to suppress the ttˉt{\bar t} background. In this case, conventional fixed-order calculations are plagued by the existence of large Sudakov logarithms αsnlogm(pTveto/Q)\alpha_s^n \log^m (p_T^{veto}/Q) for QmV+mHQ\sim m_V + m_H which lead to unreliable predictions as well as large theoretical uncertainties, and thus limit the accuracy when comparing experimental measurements to the Standard Model. In this work, we show that the resummation of Sudakov logarithms beyond the next-to-next-to-leading-log accuracy, combined with the next-to-next-to-leading order calculation, reduces the scale uncertainty and stabilizes the perturbative expansion in the region where the vector bosons carry large transverse momentum. Our result improves the precision with which Higgs properties can be determined from LHC measurements using boosted Higgs techniques.Comment: 24 pages, 8 figure

    Atomic-Layer-Deposited Al2O3 on Bi2Te3 for Topological Insulator Field-Effect Transistors

    Get PDF
    We report dual-gate modulation of topological insulator field-effect transistors (TI FETs) made on Bi2Te3 thin flakes with integration of atomic-layer-deposited (ALD) Al2O3 high-k dielectric. Atomic force microscopy study shows that ALD Al2O3 is uniformly grown on this layer-structured channel material. Electrical characterization reveals that the right selection of ALD precursors and the related surface chemistry play a critical role in device performance of Bi2Te3 based TI FETs. We realize both top-gate and bottom-gate control on these devices, and the highest modulation rate of 76.1% is achieved by using simultaneous dual gate control.Comment: 4 pages, 3 figure

    MoS2 Dual-Gate MOSFET with Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric

    Full text link
    We demonstrate atomic-layer-deposited (ALD) high-k dielectric integration on two-dimensional (2D) layer-structured molybdenum disulfide (MoS2) crystals and MoS2 dual-gate n-channel MOSFETs with ALD Al2O3 as top-gate dielectric. Our C-V study of MOSFET structures shows good interface between 2D MoS2 crystal and ALD Al2O3. Maximum drain currents using back-gates and top-gates are measured to be 7.07mA/mm and 6.42mA/mm at Vds=2V with a channel width of 3 {\mu}m, a channel length of 9 {\mu}m, and a top-gate length of 3 {\mu}m. We achieve the highest field-effect mobility of electrons using back-gate control to be 517 cm^2/Vs. The highest current on/off ratio is over 10^8.Comment: submitted to IEEE Electron Device Letter
    corecore